翻訳と辞書
Words near each other
・ Ellis H. Roberts
・ Ellis Hagler
・ Ellis Haizlip
・ Ellis Hall
・ Ellis Hargreaves
・ Ellis Harrison
・ Ellis Henican
・ Ellis Hicks
・ Ellis Hillman
・ Ellis Hobbs
・ Ellis Hollins
・ Ellis Hooks
・ Ellis Horowitz
・ Ellis Hotel
・ Ellis Hume-Williams
Elliptic cylindrical coordinates
・ Elliptic divisibility sequence
・ Elliptic filter
・ Elliptic flow
・ Elliptic function
・ Elliptic gamma function
・ Elliptic Gauss sum
・ Elliptic geometry
・ Elliptic hypergeometric series
・ Elliptic integral
・ Elliptic operator
・ Elliptic orbit
・ Elliptic partial differential equation
・ Elliptic pseudoprime
・ Elliptic rational functions


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Elliptic cylindrical coordinates : ウィキペディア英語版
Elliptic cylindrical coordinates

Elliptic cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional elliptic coordinate system in the
perpendicular z-direction. Hence, the coordinate surfaces are prisms of confocal ellipses and hyperbolae. The two foci
F_ and F_ are generally taken to be fixed at -a and
+a, respectively, on the x-axis of the Cartesian coordinate system.
==Basic definition==

The most common definition of elliptic cylindrical coordinates (\mu, \nu, z) is
:
x = a \ \cosh \mu \ \cos \nu

:
y = a \ \sinh \mu \ \sin \nu

:
z = z
\!
where \mu is a nonnegative real number and \nu \in [0, 2\pi).
These definitions correspond to ellipses and hyperbolae. The trigonometric identity
:
\frac \cosh^ \mu} + \frac \sinh^ \mu} = \cos^ \nu + \sin^ \nu = 1

shows that curves of constant \mu form ellipses, whereas the hyperbolic trigonometric identity
:
\frac \cos^ \nu} - \frac \sin^ \nu} = \cosh^ \mu - \sinh^ \mu = 1

shows that curves of constant \nu form hyperbolae.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Elliptic cylindrical coordinates」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.